
Intro to Modern Algebra I
Math GU4041

New York, 2021/03/17

Exercise Sheet 9

Quotients, actions and semi-direct products

Exercise 1 (Conjugation of permutations). Let σ ∈ Sn be a k-cycle:

σ = (i1 i2 · · · ik) .

For τ ∈ Sn, prove that
τστ−1 = (τ(i1) τ(i2) · · · τ(ik)) .

Then, describe the conjugacy class of a general k-cycle in Sn. In addition, prove that the
following subgroup is not normal in S5:

〈(1 2 3)〉 6C S5 .

Exercise 2. Solve the following systems of congruences. More precisely, for every system of
congruences below, find all the values of x ∈ Z that satisfy the given conditions.

(a) {
x ≡ 2 (mod 3)
x ≡ 3 (mod 5)

(b) {
x ≡ 1 (mod 3)
2x ≡ 3 (mod 7)

(Hint: there are plenty of methods and algorithms available. But, for the very small numbers
given here, you can do it easily by try and error, if you know what you are looking for. Please,
consult the theorem given in class, before you start.)

Exercise 3 (Second isomorphism theorem). Let G be a group, N C G, H < G. Prove that

(a) H ∩N C H.

(b) N C NH.

(c) H/(H ∩N) ' (NH)/N .
(Hint: Construct a homomorphism H→(NH)/N . Then apply the first isomorphism theo-
rem.)
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Exercise 4 (Third isomorphism theorem). Let ϕ : G → G′ be a homomorphism of G onto G′.
Given N ′ C G′, let N = ϕ−1(N ′). Prove that

G/N ' G′/N ′ .

Note: This is usually stated with the following suggestive formula: denote K = kerϕ, then

G/N ' (G/K)/(N/K) .

Exercise 5. For a group action
α : G×X→X ,

consider the map
ϕα : G → S(X) ,

defined so that for every g ∈ G, ϕα(g) is the map that associates to an x ∈ X the element
α(g, x) ∈ X. (This map was discussed in class). Prove that ϕα is a group homomorphism.

Exercise 6. Fix a group action Gy X. Let x, y ∈ X be points such that O(x) = O(y). Prove
that the stabilizer of x is conjugated to the stabilizer of y. In symbols:

∃ g ∈ G s.t. Stab(x) = g Stab(y) g−1 .

Exercise 7. Let N,H be groups and

ϕ : H → Aut(N) ,

a homomorphism. On the set N ×H consider the operation

(n, h)(n′, h′) = (n ϕh(n′), h h′) .

Prove that this operation turns N ×H into a group.
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