COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Intro to Modern Algebra I Math GU4041 New York, 2021/03/31

EXERCISE SHEET 11

Cauchy's theorem

Exercise 1. Find a group G and a number d dividing #G such that G has no element of order d.

Exercise 2. Let G be a group and $a \in G$. Recall that C(a) is the centralizer of A (see HW 6, Exercise 4).

- (a) Prove that for all $x \in G$, $C(xax^{-1}) = xC(a)x^{-1}$.
- (b) More generally, prove that if φ is an automorphism of G, then $C(\varphi(a)) = \varphi(C(a))$.

Exercise 3. Let G be a group, and H < G. We define the **normalizer** of H in G as

$$N(H) = \{ x \in G \mid xHx^{-1} = H \}.$$

Prove the following statements:

- (a) N(H) < G.
- (b) $H \subset N(H)$.
- (c) $H \lhd N(H)$.
- (d) $H \lhd G \Leftrightarrow N(H) = G$.
- (e) $\forall x \in G, \ N(xHx^{-1}) = xN(H)x^{-1}.$

Exercise 4. Let G be a group with subgroups A, B such that (#A, #B) = 1. Prove that

$$#AB = #A \cdot #B.$$

Exercise 5.

- (a) Prove that a group of order 99 has a nontrivial normal subgroup.
- (b) Prove that a group of order 42 has a nontrivial normal subgroup.
- (c) Prove that a group of order 42 has a nontrivial normal subgroup of order 21.

Exercise 6. Classify all the groups of order 55.