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Logarithmic limit sets of real semi-algebraic sets

Daniele Alessandrini

(Communicated by C. Scheiderer)

Abstract. This paper is about the logarithmic limit sets of real semi-algebraic sets, and, more
generally, about the logarithmic limit sets of sets definable in an o-minimal, polynomially bounded
structure. We prove that most of the properties of the logarithmic limit sets of complex algebraic
sets hold in the real case. This includes the polyhedral structure and the relation with the theory of
non-Archimedean fields, tropical geometry and Maslov dequantization.

1 Introduction

Logarithmic limit sets of complex algebraic sets have been studied extensively. They
first appeared in Bergman’s paper [3], and then they were further studied by Bieri and
Groves in [4]. Recently their relations with the theory of non-Archimedean fields and
tropical geometry were discovered (see for example [17], [10] and [6]). They are now
usually called tropical varieties, but they appeared also under the names of Bergman fans,
Bergman sets, Bieri-Groves sets or non-Archimedean amoebas. The logarithmic limit
set of a complex algebraic set is a polyhedral complex of the same dimension as the
algebraic set, it is described by tropical equations and it is the image of an algebraic set
over an algebraically closed non-Archimedean field under the component-wise valuation
map. The tools used to prove these facts are mainly algebraic and combinatorial.

In this paper we extend these results to the logarithmic limit sets of real algebraic
and semi-algebraic sets. The techniques we use to prove these results in the real case
are very different from the ones used in the complex case. Our main tool is the cell
decomposition theorem, as we prefer to look directly at the geometric set, instead of
using its equations. In the real case, even if we restrict our attention to an algebraic set,
it seems that the algebraic and combinatorial properties of the defining equations do not
give enough information to study the logarithmic limit set.

In the following we often need to act on (R>0)
n with maps of the form

ϕA(x1, . . . , xn) =
(
xa11

1 · · ·x
a1n
n , xa21

1 · · ·x
a2n
n , . . . , xan1

1 · · ·xannn

)
,
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where A = (aij) is an n × n matrix. When the entries of A are not rational, the image
of a semi-algebraic set is, in general not semi-algebraic. Actually, the only thing we can
say about images of semi-algebraic sets via these maps is that they are definable in the
structure of the real field expanded with arbitrary power functions. This structure, usually
denoted by RR

, is o-minimal and polynomially bounded, and these are the main properties
we need in the proofs. Moreover, if S is a set definable in RR

, then the image ϕA(S) is
again definable, as the functions x −→ xα are definable for every α. If a structure has the
property that all power functions with every real exponent are definable, that structure is
said to have field of exponents R.

In this sense the category of semi-algebraic sets is too small for our methods. It seems
that the natural context for the study of logarithmic limit sets is to fix a general expansion
of the structure of the real field that is o-minimal and polynomially bounded, with field
of exponents R. For sets definable in such a structure, the properties that were known for
the complex algebraic sets also hold. We can prove that these logarithmic limit sets are
polyhedral complexes with dimension less than or equal to the dimension of the definable
set.

Then we show how the relation between tropical varieties and images of varieties
defined over non-Archimedean fields, well known for algebraically closed fields, can
be extended to the case of real closed fields. We give the notion of non-Archimedean
amoebas of semi-algebraic sets over non-Archimedean fields, and also for sets definable
in other o-minimal structures on non-Achimedean fields. We show that the logarithmic
limit set of a definable subset of Rn is the non-Archimedean amoeba of an extension
of the definable set to a real closed non-Archimedean field. We also study the relations
between non-Archimedean amoebas and patchworking families of definable sets. Note
that this notion of non-Archimedean amoebas of definable sets generalizes the notion of
non-Archimedean amoebas of semi-linear sets that has been used in [8] to study tropical
polytopes.

An analysis of the defining equations and inequalities is carried out, showing that the
logarithmic limit set of a closed semi-algebraic set can be described applying the Maslov
dequantization to a suitable formula defining the semi-algebraic set.

Our motivation for this work comes from the study of Teichmüller spaces and, more
generally, of spaces of geometric structures on manifolds. In the papers [1] and [2] we
present a construction of compactifications using the logarithmic limit sets. The properties
of logarithmic limit sets we prove here will be used in [1] to describe the compactification.
For example, the fact that logarithmic limit sets of real semi-algebraic sets are polyhedral
complexes will provide an independent construction of the piecewise linear structure on
the Thurston boundary of Teichmüller spaces. Moreover the relations with tropical ge-
ometry and the theory of non-Archimedean fields will be used in [2] for constructing a
geometric interpretation of the boundary points.

In Section 2 we define logarithmic limit sets for general subsets of (R>0)
n, and we

recall some preliminary notions of model theory and o-minimal geometry that we will use
in the following, most notably the notion of regular polynomially bounded structures. In
Section 3 we prove that logarithmic limit sets of definable sets in a regular polynomially
bounded structure are polyhedral complexes with dimension less than or equal to the
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dimension of the definable set, and we provide a local description of these sets. The main
tool we use in this section is the cell decomposition theorem.

In Section 4 we consider a special class of non-Archimedean fields: the Hardy fields of
regular polynomially bounded structures. These are non-Archimedean real closed fields
of rank one extending R, with a canonical real valued valuation and residue field R. The
elements of these fields are germs of definable functions, hence they have better geometric
properties than the fields of formal series usually employed in tropical geometry. The
images, under the component-wise valuation map, of definable sets in the Hardy fields
are related with the logarithmic limit sets of real definable sets, and with the limit of real
patchworking families.

In Section 5 we compare the construction of this paper with other known construc-
tions. We show that the logarithmic limit sets of complex algebraic sets are only a partic-
ular case of the logarithmic limit sets of real semi-algebraic sets, and the same happens
for the limit of complex patchworking families. Hence our methods provide an alterna-
tive proof (with a topological flavor) for some known results about complex sets. We also
compare the logarithmic limit sets of real algebraic sets with the construction of Positive
Tropical Varieties (see [18]). Even if in many examples these two notions coincide, we
show some examples where they differ.

In Section 6 we show how the construction of Maslov dequantization provides a rela-
tion between logarithmic limit sets of semi-algebraic sets and the tropical semifield. We
show that for every closed semi-algebraic set there exists a defining formula such that the
tropicalization of that formula defines the logarithmic limit set. This result is the analog,
for real semi-algebraic sets, of the existence of a tropical basis for complex algebraic sets.

2 Preliminaries

2.1 Notation. If x ∈ Rn we will denote its coordinates by x1, . . . , xn. If ω ∈ Nn we
will use the multi-index notation for powers: xω = xω1

1 . . . xωnn . We will consider also
powers with real exponents, if the base is positive, hence if x ∈ (R>0)

n and ω ∈ Rn we
will write xω = xω1

1 . . . xωnn .
If (s(k)) is a sequence in Rn, we will denote its k-th element by s(k) ∈ Rn. The

subscript notation will be reserved for the coordinates si(k) ∈ R.
Given a real number α > 1, we will denote by Logα the component-wise logarithm

map, and by Expα its inverse:

Logα : (R>0)
n 3 (x1, . . . , xn) −→ (logα(x1), . . . , logα(xn)) ∈ Rn

Expα : Rn 3 (x1, . . . , xn) −→ (αx1 , . . . , αxn) ∈ (R>0)
n

We define a notion of limit for every one-parameter family of subsets of Rn. Suppose
that for all t ∈ (0, ε) we have a set St ⊂ Rn. We can construct the deformation

D(S · ) = {(x, t) ∈ Rn × (0, ε) | x ∈ St}.

We denote by D(S · ) the closure of D(S · ) in Rn × [0, ε), then we define

lim
t→0

St = π(D(S · ) ∩ Rn × {0}) ⊂ Rn,
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Figure 1. If V = {(x, y) ∈ (R>0)
2 | y = sinx+ 2, x ≤ 5} (left picture), then A0(V ) =

{(x, y) ∈ R2 | y = 0, x ≤ 0} (right picture).

where π : Rn × [0, ε) −→ Rn is the projection on the first factor. This limit is well
defined for every family of subsets of Rn.

Proposition 2.1. The set S = limt→0 St is a closed subset of Rn. A point y is in S if
and only if there exist a sequence (y(k)) in Rn and a sequence (t(k)) in (0, ε) such that
(t(k))→ 0, (y(k))→ y and ∀k ∈ N : y(k) ∈ St(k).

2.2 Logarithmic limit sets of general sets. Given a set V ⊂ (R>0)
n and a number

t ∈ (0, 1), the amoeba of V is

At(V ) = Log 1
t
(V ) =

−1
loge(t)

Loge(V ) ⊂ Rn.

The limit of the amoebas (in the sense of subsection 2.1) is the logarithmic limit set of V :

A0(V ) = lim
t→0
At(V ).

Some examples of logarithmic limit sets are in Figures 1 and 2.

Proposition 2.2. Given a set V ⊂ (R>0)
n the following properties hold:

(1) The logarithmic limit set A0(V ) is closed and y ∈ A0(V ) if and only if there exist a
sequence (x(k)) in V and a sequence (t(k)) in (0, 1) such that (t(k))→ 0 and(

Log 1
t(k)

(x(k))
)
→ y.

(2) The logarithmic limit set A0(V ) is a cone in Rn.
(3) We have 0 ∈ A0(V ) if and only if V 6= ∅. Moreover, A0(V ) = {0} if and only if V

is relatively compact in (R>0)
n and non-empty.

(4) If W ⊂ Rn we have A0(V ∪W ) = A0(V ) ∪ A0(W ) and A0(V ∩W ) ⊂ A0(V ) ∩
A0(W ).
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Figure 2. If V = {(x, y) ∈ (R>0)
2 | x2 ≤ y ≤

√
x} (left picture), then A0(V ) =

{(x, y) ∈ R2 | 2x ≤ y ≤ 1
2x} (right picture).

Proof. The first assertion is simply a restatement of Proposition 2.1. For the second one,
we want to prove that if λ > 0 and y ∈ A0(V ), then λ−1y ∈ A0(V ). There ex-
ist a sequence (x(k)) in V and a sequence (t(k)) in (0, 1) such that (t(k)) → 0 and(
Log 1

t(k)
(x(k))

)
→ y. Consider the sequences (x(k)) and

(
t(k)

λ). Now

Log 1
t(k)λ

(x(k)) =
−1

loge
(
t(k)

λ) Loge(x(k)) = λ−1 −1
loge(t(k))

Loge(x(k))

and this sequence converges to λ−1y. The third and fourth assertions are trivial. 2

Given a closed cone C ⊂ Rn, there always exists a set V ⊂ (R>0)
n such that

C = A0(V ), simply take V = Log−1
e (C). Then At(V ) = C for all t. If we want

to find more properties of logarithmic limit sets, we need some assumptions on the set
V , for example that V is semi-algebraic or, more generally, definable in an o-minimal
polynomially bounded structure, as in Section 3.

Let A = (aij) ∈ GLn(R). The matrix A acts on Rn in the natural way and, via
conjugation with the map Loge, it acts on (R>0)

n. Explicitly, it induces the maps A :
Rn −→ Rn and A : (R>0)

n −→ (R>0)
n:

A(x) = A(x1, . . . , xn) = (a11x1 + · · ·+ a1nxn, . . . , an1x1 + · · ·+ annxn)

A(x) = Expe ◦A ◦ Loge(x) = (xa11
1 xa12

2 · · ·x
a1n
n , . . . , xan1

1 xan2
2 · · ·xannn )

If V ⊂ (R>0)
n and B ∈ GLn(R), then B(A0(V )) = A0(B(V )).

Lemma 2.3. (0, . . . , 0,−1) ∈ A0(V ) if and only if there exists a sequence (y(k)) in V
such that (yn(k)) −→ 0 and

∀N ∈ N : ∃k0 ∈ N : ∀k > k0 : ∀i ∈ {1, . . . , n− 1} :

yn(k) < (yi(k))
N and yn(k) < (yi(k))

−N
.
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Proof. Suppose (0, . . . , 0,−1) ∈ A0(V ), then by Proposition 2.2 there exists a sequence
(y(k)) in V and a sequence (t(k)) in (0, 1) such that (t(k))→ 0 and

(
Log 1

t(k)
(y(k))

)
→

(0, . . . , 0,−1). This means that(
−1

loge(t(k))
loge(yi(k))

)
→

{
−1 if i = n

0 if i ∈ {1, . . . , n− 1}

Now (t(k))→ 0 hence
( −1

loge(t(k))

)
→ 0,

(
loge(yn(k))

)
→ −∞, (yn(k))→ 0 and

∀i ∈ {1, . . . , n− 1} :

(
loge(yi(k))

loge(yn(k))

)
→ 0.

Hence ∀ε > 0 : ∃k0 : ∀k > k0 : ∀i < n : (yn(k))
ε
< yi(k) < (yn(k))

−ε. We conclude
by reversing the inequalities and choosing ε = 1

N .
Conversely, if (y(k)) has the stated property, then

(
|Loge(y(k))|

)
→∞ (where | · | is

the standard Euclidean norm in Rn). It is possible to choose (t(k)) such that (t(k))→ 0
and

∣∣Log 1
t(k)

(y(k))
∣∣ = 1. Up to subsequences, the sequence

(
Log 1

t(k)
(y(k))

)
converges

to a point that, by reversing the calculations in first part of the proof, is (0, . . . , 0,−1).
Hence (0, . . . , 0,−1) ∈ A0(V ). 2

Corollary 2.4. If there exists a sequence (x(k)) in V such that (x(k))→ (a1, . . . , an−1,
0), where a1, . . . , an−1 > 0, then (0, . . . , 0,−1) ∈ A0(V ). The converse is not true in
general (see Figure 3).

We will see in Theorem 3.6 that if V is definable in an o-minimal and polynomially
bounded structure, the converse of the corollary becomes true.

A sequence (b(k)) in (R>0)
n is in standard position in dimensionm if, for g = n−m,

we have (b(k))→ b = (b1, . . . , bg, 0, . . . , 0), with b1, . . . , bg > 0 and

∀N ∈ N : ∃k0 : ∀k > k0 : ∀i ∈ {g + 1, . . . , n− 1} : bi+1(k) < (bi(k))
N
.

Figure 3. If V = {(x, y) ∈ (R>0)
2 | y = e−

1
x2 } (left picture), then A0(V ) = {(x, y) ∈

R2 | y = 0, x ≥ 0 or x = 0, y ≤ 0} (right picture).
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Lemma 2.5. Let (a(k)) be a sequence in (R>0)
n such that (a(k)) → a = (a1, . . . , ah,

0, . . . , 0), with h < n and a1, . . . , ah > 0. There exist a number m ≤ n − h, a sub-
sequence (again denoted by (a(k))) and a linear map A : Rn −→ Rn such that the
sequence (b(k)) =

(
A(a(k))

)
⊂ (R>0)

n is in standard position in dimension m.

Proof. By induction on n. For n = 1 the statement is trivial. Suppose that the statement
holds for n − 1. Consider the logarithmic image of the sequence:

(
Loge(a(k))

)
. Up

to extracting a subsequence, the sequence
( Loge(a(k))
|Loge(a(k))|

)
converges to a unit vector v =

(0, . . . , 0, vh+1, . . . , vn). There exists a linear map B, acting only on the last n − h
coordinates, sending v to (0, . . . , 0,−1). By Lemma 2.3, the map B sends (a(k)) to
a sequence (b(k)) such that (bn(k)) → 0 and ∀N ∈ N : ∃k0 : ∀k > k0 : ∀i ∈
{1, . . . , n− 1}:

bn(k) < (bi(k))N and bn(k) < (bi(k))−N (1)

As B acts only on the last n−h coordinates, (bi(k))→ ai 6= 0 for i ∈ {1, . . . , h}. Up to
subsequences we can suppose that for every i ∈ {h+ 1, . . . , n− 1} one of the following
three possibilities occurs: (bi(k)) → 0, (bi(k)) → bi 6= 0, (bi(k)) → +∞. Up to a
change of coordinates with maps of the form

Bi(x1, . . . , xi, . . . , xn) = (x1, . . . ,−xi, . . . , xn)

Bi(x1, . . . , xi, . . . , xn) = (x1, . . . , x
−1
i , . . . , xn),

we can suppose that for every i ∈ {h + 1, . . . , n − 1} either (bi(k)) → 0 or (bi(k)) →
bi 6= 0. Up to reordering the coordinates, we can suppose that there exists g ≥ h such
that for i ∈ {1, . . . , g}: (bi(k)) → bi 6= 0 and for i > g, (bi(k)) → 0. Now consider the
projection on the first n− 1 coordinates: π : Rn −→ Rn−1. By the inductive hypothesis
there exists a linear map C : Rn−1 −→ Rn−1 sending the sequence (π(b(k))) to a
sequence (c(k)) satisfying

∀N ∈ N : ∃k0 : ∀k > k0 : ∀i ∈ {g + 1, . . . , n− 2} : ci+1(k) < (ci(k))
N (2)

The composition of B and a map that preserves the last coordinate and acts as C on
the first ones is the linear map we are searching for. For i ∈ {g + 1, . . . , n − 2}, the
inequality follows from (2), for i = n− 1, it follows from (1). 2

The basic cone defined by the vector N = (N1, . . . , Nn−1) ∈ Nn−1 is

BN = {x ∈ Rn | ∀i : xi ≤ 0 and ∀i < n : xi+1 ≤ Nixi}.

Note that if N ′ = (N ′1, . . . , N
′
n−1), with ∀i : N ′i ≥ Ni, then B′N ⊂ BN . The exponential

basic cone in (R>0)
n defined by the vector N = (N1, . . . , Nn−1) ∈ Nn−1 and the scalar

h > 0 is the set

EN,h =
{
x ∈ Rn | ∀i : 0 < xi ≤ h and ∀i < n : xi+1 ≤ xiNi

}
.

Lemma 2.6. The following easy facts about basic cones hold:
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(1) The logarithmic limit set of an exponential basic cone is a basic cone:

A0(EN,h) = BN .

(2) If (b(k)) is a sequence in (R>0)
n in standard position in dimension n, and EN,h is

an exponential basic cone, then for large enough k, b(k) ∈ EN,h.

2.3 Definable sets in o-minimal structures. In this subsection we recall notation and
some definitions of model theory and o-minimal geometry we will use later, see [9] and
[19] for details. Given a set of symbols S (see [9, Chapter II, Definition 2.1]), we denote
by LS the corresponding first order language (see [9, Chapter II, Definition 3.2]). If S′

is an expansion of a set of symbols S we will write S ⊂ S′. For example, for the theory
of real closed fields one can use the set of symbols of ordered semirings: OS = ({≤
}, {+, ·}, ∅) or the set of symbols of ordered ringsOR = ({≤}, {+,−, ·}, {0, 1}), which
is an expansion of OS. In the following we will use these sets of symbols and some of
their expansions.

We usually will denote an S-structure by M = (M,a), where M is a set, and a is the
interpretation (see [9, Chapter III, Definition 1.1]). Given an S-structure M = (M,a),
and an LS-formula ϕ without free variables, we will write M � ϕ if M satisfies ϕ (see
[9, Chapter III, Definition 3.1]).

A real closed field can be defined as an OS- or an OR-structure satisfying a suitable
infinite set of first order axioms. The natural OS-structure on R will be denoted by R.

If M = (M,a) is an S-structure, and S′ is an expansion of S, an S′-structure (M,a′)
is an expansion of the S-structure (M,a) if a′ restricted to the symbols of S is equal to a.
If M ⊂ N , an S-structure N = (N, b) is an extension of an S-structure M = (M,a) if
for all s ∈ S, b(s)|M = a(s).

A definable subset of Mn is a set that is defined by an LS-formula ϕ(x1, . . . , xn, y1,
. . . , ym) and by parameters a1, . . . am ∈M , and a definable map is a map whose graph is
definable. For example if M is an OS- or an OR-structure satisfying the axioms of real
closed fields, the definable sets are the semi-algebraic sets, and the definable maps are the
semi-algebraic maps.

Let S be an expansion of OS, and let M be an S-structure satisfying the axioms of
the real closed fields. The S-structure M is said to be o-minimal if the definable subsets
of M are the finite unions of points and intervals (bounded and unbounded). See also [7]
and [19].

Let S be an expansion of OS, and let R = (R, a) be an o-minimal S-structure. The
S-structure R is called polynomially bounded if for every definable function f : R −→ R
there exists a natural number N such that for every sufficiently large x, |f(x)| ≤ xN .
See also [12]. In [13] it is shown that, in this case, if f : R −→ R is definable and not
ultimately 0, there exist r, c ∈ R, c 6= 0, such that

lim
x→+∞

f(x)

xr
= c.

The set of all such r is a subfield of R, called the field of exponents of R. For example the
OR-structure R is polynomially bounded with field of exponents Q.
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If Λ ⊂ R is a subfield, we can construct an expansion of S and R by adding the power
functions with exponents in Λ. We expand S to SΛ by adding a function symbol fλ for
every λ ∈ Λ, and we expand R to an SΛ-structure RΛ interpreting the function symbol
fλ by the function that is x −→ xλ for positive numbers and x −→ 0 on negative ones.
The structure RΛ is again o-minimal, as its definable sets are definable in the structure R
expanded by adding the exponential function ex, which is o-minimal by [16].

Suppose that the expansion of R constructed by adding the family of functions
{xr|[1,2]}r∈Λ

is polynomially bounded, then RΛ is too (see [14]). For example if the
structure R expanded by adding the restricted exponential function ex|[0,1] is polynomially
bounded, then RΛ is too.

In the following we will work with o-minimal, polynomially bounded structures R
expanding R, with the property that RR is polynomially bounded. We will call such
structures regular polynomially bounded structures. One example of regular polynomially
bounded structure is Ran, the real numbers with restricted analytic functions, see [20] for
details. This structure has field of exponents Q, while RR

an has field of exponents R.
As Ran is an expansion of R, also RR

is polynomially bounded, hence R is a regular
polynomially bounded structure.

Other examples of regular polynomially bounded structures are the structure Ran∗ of
the real field with convergent generalized power series (see [22]), the field of real num-
bers with multisummable series (see [23]) and the structures defined by a quasianalytic
Denjoy–Carleman class (see [15]).

3 Logarithmic limit sets of definable sets

3.1 Some properties of definable sets. Let R be an o-minimal and polynomially
bounded expansion of R.

Lemma 3.1. For every definable function f : (R>0)
n −→ R>0, there is an exponential

basic cone C and N ∈ N such that f|C(x1, . . . , xn) ≥ (xn)
N .

Proof. Fix an exponential basic cone C ⊂ (R>0)
n. By the Łojasiewicz inequality (see

[21, 4.14]) there exist N ∈ N and Q > 0 such that Qf|C(x1, . . . , xn) ≥ (xn)
N . The

assertion follows by choosing an exponent bigger than N and a suitable exponential basic
cone smaller than C. 2

Lemma 3.2. Every cell decomposition of (R>0)
n has a cell containing an exponential

basic cone.

Proof. This proof is based on the cell decomposition theorem, see [19, Chapter 3] for
details. We proceed by induction on n. For n = 1, the statement is trivial.

Suppose the lemma true for n. If {Ci} is a cell decomposition of (R>0)
n+1, and if

π : (R>0)
n+1 −→ (R>0)

n is the projection on the first n coordinates, then {π(Ci)} is a
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cell decomposition of (R>0)
n, hence, by induction, it contains an exponential basic cone

D of (R>0)
n. Then π−1(D)× (0, 1] contains a cell of the form

E = {(x̄, xn+1) | x̄ ∈ D, 0 < xn+1 < f(x̄)},

where x̄ = (x1, . . . , xn) and f : D −→ (0, 1] is definable. By the previous lemma, there
is an exponential basic cone D′ ⊂ D and N ∈ N such that f|D′(x̄) ≥ (xn)

N . Hence E
contains the exponential basic cone{

(x̄, xn+1) | x̄ ∈ D′, 0 < xn+1 ≤ (xn)
N}

. 2

Corollary 3.3. Let V ⊂ (R>0)
n be definable in R, and suppose that V contains a se-

quence (x(k)) in standard position in dimension n. Then V contains an exponential basic
cone.

Proof. Let {Ci} be a cell decomposition of (R>0)
n adapted to V . By the previous lemma,

one of the cells contains an exponential basic cone D. By Lemma 2.6, if k is sufficiently
large, (x(k)) ∈ D, hence D ⊂ V . 2

Corollary 3.4. Let V ⊂ (R>0)
2 be definable in R, and suppose that exists a sequence

(x(k)) in V such that (x(k))→ 0 and

∀N ∈ N : ∃k0 : ∀k > k0 : x2(k) < (x1(k))
N
.

Then there exist h0 > 0 and M ∈ N such that{
x ∈ R2 | 0 < x1 < h0 and 0 < x2 < (x1)

M} ⊂ V.
Proof. This is precisely the previous corollary with n = 2. 2

Lemma 3.5. Let V ⊂ (R>0)
n be definable in R, and suppose that there exists a se-

quence (x(k)) in V , an integer m ∈ {1, . . . , n} and, for g = n −m, positive numbers
a1, . . . , ag > 0 such that (x(k))→ (a1, . . . , ag, 0, . . . , 0), and such that

∀N ∈ N : ∃k0 : ∀k > k0 : ∀i ∈ {g + 1, . . . , n− 1} : xn(k) < (xi(k))
N
.

Then for every ε > 0 there exist a sequence (y(k)) in V and positive real numbers
b1, . . . bn−1 > 0 such that (y(k)) → (b1, . . . bn−1, 0) and for all i ∈ {1, . . . g} we have
|bi − ai| < ε.

Proof. If n = 2 the statement follows by Corollary 3.4. By induction on n we suppose
the statement to be true for definable sets in Rn′ with n′ < n. We split the proof in two
cases, when m < n and when m = n.

If m < n, fix an ε > 0, smaller than every ai, and consider the parallelepiped

cε =
{

(z1, . . . , zn) ∈ Rn
∣∣∣ |z1 − a1| <

1
2
ε, . . . , |zg − ag| <

1
2
ε
}
.
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Let π : Rn −→ Rm be the projection on the last m coordinates. The set π(V ∩
cε) is definable in Rm, the sequence (π(x(k))) satisfies the hypotheses of the lemma,
hence, by induction, there exists a sequence (z(k)) ∈ π(V ∩ cε) converging to the point
(bg+1, . . . , bn−1, 0). Let (y(k)) be a sequence such that y(k) ∈ π−1(z(k)). We can ex-
tract a subsequence (called again (y(k))) such that (y(k))→ (b1, . . . , bn−1, 0) where for
all i ∈ {1, . . . g} we have |bi − ai| ≤ 1

2ε.
If m = n > 2, then (x(k)) → 0. The sequence

( (x1(k),...,xn−1(k))
|(x1(k),...,xn−1(k))|

)
is contained in

the unit sphere Sn−2, and, up to subsequences, we can suppose that it converges to a unit
vector v = (v1, . . . , vn−1) ∈ (R≥0)

n−1. Up to reordering, v = (v1, . . . , vh, 0, . . . , 0),
with v1, . . . , vh > 0. We can choose an α > 0 small enough such that the closure of the
open cone

Cv(α) =
{
y ∈ Rn

∣∣∣ 〈(y1, . . . , yn−1), v
〉

|(y1, . . . , yn−1)||v|
> cosα

}
intersects the coordinate hyperplane {y | y1 = 0} only in 0. Let π : Rn −→ Rn−1 the
projection on the last n − 1 coordinates. The set π(V ∩ Cv(α)) is definable in Rn−1,
the sequence (π(x(k))) satisfies the hypotheses of the lemma, hence, by induction, there
exists a sequence (z(k)) in π(V ∩Cv(α)) converging to the point (b2, . . . , bn−1, 0), with
b2, . . . , bn−1 > 0. Let (y(k)) be a sequence such that y(k) ∈ π−1(z(k)). Up to sub-
sequences, (y(k)) → (b1, . . . , bn−1, 0). To see that b1 > 0, note that y(k) ∈ Cv(α),
whose closure intersects {y | y1 = 0} only in 0. Hence if, by contradiction, we have that
(y1(k))→ 0, then (y(k))→ 0. But b2, . . . , bn−1 > 0, a contradiction. 2

3.2 Polyhedral structure. Let V ⊂ (R>0)
n be a definable set in an o-minimal and

polynomially bounded structure. Our main object of study isA0(V ), the logarithmic limit
set of V . Suppose that R has field of exponents Λ ⊂ R. Given a matrix B ∈ GLn(Λ),
the set B(A0(V )) is the logarithmic limit set of B(V ). The components of B−1 are all
definable in R because their exponents are in Λ, hence the set B(V ) is again definable.

Theorem 3.6. Let V ⊂ (R>0)n be a set definable in an o-minimal and polynomially
bounded structure. The point (0, . . . , 0,−1) is in A0(V ) if and only if there exists a
sequence (x(k)) in V such that (x(k))→ (a1, . . . , an−1, 0), where a1, . . . , an−1 > 0.

Proof. If there exists such an (x(k)), then it is obvious that (0, . . . , 0,−1) ∈ A0(V ).
Vice versa, if (0, . . . , 0,−1) ∈ A0(V ), then by Lemma 2.3 there exists a sequence (y(k))
in V such that (yn(k)) −→ 0 and

∀N ∈ N : ∃k0 ∈ N : ∀k > k0 : ∀i ∈ {1, . . . , n− 1} :

yn(k) < (yi(k))
N and yn(k) < (yi(k))

−N
.

Up to subsequences we can suppose that for all i ∈ {1, . . . , n− 1} one of the follow-
ing three possibilities occur: (yi(k)) → 0, (yi(k)) → ai 6= 0, (yi(k)) → +∞. Up to
a change of coordinates with maps of the form Bi(x1, . . . , xi, . . . , xn) = (x1, . . . ,−xi,
. . . , xn), we can suppose that for all i ∈ {1, . . . , n− 1} either (yi(k))→ 0 or (yi(k))→
ai 6= 0. Then we can apply Lemma 3.5, and we are done. 2
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Now we suppose that R is a regular polynomially bounded structure, or, equivalently,
that R has field of exponents R. Let x ∈ A0(V ). We want to describe a neighborhood of
x inA0(V ). To do this, we choose a map B ∈ GLn(R) such that B(x) = (0, . . . , 0,−1).
Now we only need to describe a neighborhood of (0, . . . , 0,−1) in A0(B(V )). As loga-
rithmic limit sets are cones, we only need to describe a neighborhood of 0 in

H = {(x1, . . . , xn−1) ∈ Rn−1 | (x1, . . . , xn−1,−1) ∈ A0(B(V ))}.

We define a one-parameter family and its limit (in the sense of subsection 2.1):

Wt = {(x1, . . . , xn−1) ∈ (R>0)
n−1 | (x1, . . . , xn−1, t) ∈ B(V )},

W =
(
lim
t→0

Wt

)
∩ (R>0)

n−1
.

The set W is a definable subset of (R>0)
n−1. Its logarithmic limit set is denoted, as

usual, by A0(W ) ⊂ Rn−1. By the previous theorem, as (0, . . . , 0,−1) ∈ A0(B(V )), W
is not empty, hence 0 ∈ A0(W ). We want to prove that there exists a neighborhood U
of 0 in Rn−1 such that A0(W ) ∩ U = H ∩ U or, in other words, that A0(W ) ∩ H is a
neighborhood of 0 both in A0(W ) and H . This will be achieved in Theorem 3.10.

A flag in Rn is a sequence (V0, V1, . . . , Vh), h ≤ n, of subspaces of Rn such that
V0 ⊂ V1 ⊂ · · · ⊂ Vh ⊂ Rn and dimVi = i. We use flags to encode the direction in
which a sequence converges to a point, in the following sense: we say that a sequence
(x(k)) in Rn converges to the point y along the flag (V1, V2, . . . , Vh) if (x(k)) → y, for
k : x(k)−y ∈ Vh \Vh−1 and ∀i ∈ {0, . . . , h−2}, the sequence (πi(x(k)−y)) converges
to the point πi(Vi+1), where πi : Vh \Vi −→ P(Vh/Vi) is the canonical projection on the
projective space P(Vh/Vi).

Lemma 3.7. For all sequences (x(k)) in Rn converging to a point y, there exists a flag
(V0, . . . , Vh) and a subsequence of (x(k)) converging to y along (V0, . . . , Vh).

Proof. It follows from the compactness of P(Vh/Vi). 2

Lemma 3.8. Let x(k) ⊂ H be a sequence converging to 0. Then at least one of its points
is in A0(W ) ∩H . In particular A0(W ) ∩H contains a neighborhood of 0 in H .

Proof. By Lemma 3.7, we can extract a subsequence, again denoted by x(k), converging
to zero along a flag (V0, V1, . . . , Vh) in Rn−1. Up to a linear change of coordinates, we can
suppose that this flag is given by ({0},Span(en−1),Span(en−2, en−1), . . . ,Span(en−h,
. . . , en−1)). Hence for i ∈ {1, . . . , n− h− 1} we have xi(k) = 0. Again by extracting a
subsequence and by a change of coordinates with maps of the form

Bi(x1, . . . , xi, . . . , xn) = (x1, . . . ,−xi, . . . , xn),

with i ∈ {n− h, . . . , n− 1}, we can suppose that for all such i, xi(k) < 0.
By Proposition 2.2, as H × {−1} ⊂ A0(B(V )), for every point x(k) there exists

a sequence (y(k, l)) in B(V ) and a sequence (t(k, l)) in (0, 1) such that (t(k, l)) → 0
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and
(
Log 1

t(k,l)
(y(k, l))

)
→ (x(k),−1). By Theorem 3.6 we can choose (y(k, l)) such

that (y(k, l)) → a(k), with ai(k) > 0 for i ∈ {1, . . . , n − h − 1}, and ai(k) = 0 for
i ∈ {n− h, . . . , n}. Up to a change of coordinates with maps of the form

Bi(x1, . . . , xi, . . . , xn) = (x1, . . . ,−xi, . . . , xn),

with i ∈ {1, . . . , n− h− 1}, we can suppose that the sequence a(k) is bounded and that,
up to subsequences, it converges to a point a, with ai = 0 for i ∈ {n− h, . . . , n}.

Let π : Rn −→ Rn−h−1 be the projection on the first n − h − 1 coordinates. Then
π(a(k)) ⊂ (R>0)

n−h−1. By Lemma 2.5 we can suppose that π(a(k)) is in standard
position, i.e. a1, . . . , ag > 0, ag+1 = · · · = an = 0 and

∀N ∈ N : ∃k0 : ∀k > k0 : ∀i ∈ {g + 1, . . . , n− h− 2} : ai+1(k) < (ai(k))
N
.

From the sequences y(k, l), we extract a diagonal subsequence z(k) in the following
way. For every k, the sequence y(k, l) converges to a(k) = (a1(k), . . . , an−h−1(k), 0,
. . . , 0). As Log 1

t(k,l)
(y(k, l)) → (x(k),−1) = (0, . . . , 0, xn−h(k), . . . , xn−1(k),−1),

for all i ∈ {n− h, . . . , n− 1} we have

loge(yn(k, l))

loge(yi(k, l))
−→ −1

xi(k)
.

For every k, we can choose an l0(k) such that

(1) ∀i ∈ {n− h, . . . , n− 1} :
∣∣ loge(yn(k,l0(k)))

loge(yi(k,l0(k))) −
−1
xi(k)

∣∣ < 1
k ,

(2) |y(k, l0(k))− a(k)| < 1
k .

We define z(k) = y(k, l0(k)). Now (z(k))→ a = (a1, . . . , ag, 0, . . . , 0) and, as x(k)→
(0, . . . , 0) along the flag (V0, . . . , Vh), we have

∀N ∈ N : ∃k0 : ∀k > k0 : ∀i ∈ {g + 1, . . . , n− 1} : zi+1(k) < (zi(k))
N
.

Let r be smaller than every a1, . . . , ag . Consider the parallelepiped

cr =
{

(z1, . . . , zn) ∈ Rn
∣∣∣ |z1 − a1| <

1
2
r, . . . , |zg − ag| <

1
2
r
}
.

Let π : Rn −→ Rn−g be the projection on the last n − g coordinates. The set
π(B(V ) ∩ cr) is definable in Rn−g , and the sequence π(z(k)) satisfies the hypotheses
of Corollary 3.3, hence π(B(V ) ∩ cr) contains an exponential basic cone, hence π(W ×
{−1} ∩ cr) also contains one. This means that A0(π(W × {−1}) ∩ cr) contains a basic
cone. Hence alsoA0(W×{−1}∩cr) contains this cone, and alsoA0(W ). By Lemma 2.6,
at least one of the points z(k) is in this cone. 2

Lemma 3.9. Let x ∈ A0(W ). Then the number r(x) = sup{r | λx ∈ H, if 0 ≤ λ ≤ r}
is strictly positive.
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Proof. Let x ∈ A0(W ). By a linear change of coordinates, we can suppose that x =
(0, . . . , 0,−1) ∈ Rn−1. By Theorem 3.6 there is a sequence (x(k)) in W converging
to the point (a1, . . . , an−2, 0), with a1, . . . , an−2 > 0. As W is the limit of the family
Wt, for every k there is a sequence (y(k, l)) in B(V ) converging to (x(k), 0). We can
construct a diagonal sequence (z(k)) in B(V ) in the following way: for every k we can
choose an l0(k) such that

|y(k, l0(k))− (x(k), 0)| < (xn−1(k))
k
.

Then we set z(k) = y(k, l0(k)). The sequence z(k) converges to the point (a1, . . . , an−2,
0, 0). Let r be smaller than any of the a1, . . . , an−2. Consider the parallelepiped

cr =
{

(z1, . . . , zn) ∈ Rn
∣∣∣ |z1 − a1| <

1
2
r, . . . , |zn−2 − an−2| <

1
2
r
}
.

Let π : Rn −→ R2 be the projection on the last 2 coordinates. The set π(B(V ) ∩ cr) is a
definable subset of R2, and the sequence π(z(k)) satisfies the hypotheses of Corollary 3.4,
hence π(B(V ) ∩ cr) contains an exponential basic cone. This means that there exists a
number r′ > 0 such that {(0, . . . , 0, z) | −r′ ≤ z ≤ 0} ⊂ H . 2

Theorem 3.10. Let V ⊂ (R>0)n be a set definable in a regular polynomially bounded
structure. Let x ∈ A0(V ) and choose a map B ∈ GLn(R) such that B(x) = (0, . . . , 0,
−1). We recall that

H = {(x1, . . . , xn−1) ∈ Rn−1 | (x1, . . . , xn−1,−1) ∈ A0(B(V ))}

Wt = {(x1, . . . , xn−1) ∈ (R>0)
n−1 | (x1, . . . , xn−1, t) ∈ B(V )}

W =
(

lim
t→0

Wt

)
∩ (R>0)

n−1
.

Then there exists a neighborhood U of 0 in Rn−1 such that A0(W ) ∩ U = H ∩ U .

Proof. We will prove that A0(W ) ∩H is a neighborhood of 0 both in A0(W ) and in H .
The previous lemma implies that if (x(k)) is a sequence in H converging to 0, then at
least one of its points is in A0(W ), hence A0(W ) ∩H is a neighborhood of 0 in H .

To prove that A0(W ) ∩ H is also a neighborhood of 0 in A0(W ), we only need to
prove that if r is the function defined in Lemma 3.9, there exists an ε > 0 such that

∀x ∈ A0(W ) ∩ Sn−2 : r(x) > ε.

But this is true, because we already know thatA0(W )∩H is a neighborhood of 0 inH . 2

Theorem 3.11. Let V ⊂ (R>0)n be a set definable in a regular polynomially bounded
structure. The logarithmic limit setA0(V ) is a polyhedral complex. Moreover, if dimV =
m, then dimA0(V ) ≤ m.
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Proof. By induction on n. For n = 1 the statement is trivial, as a cone in R is a polyhedral
set, and every zero dimensional definable set is compact, hence its logarithmic limit set
is a point. Suppose the statement is true for n − 1. For every x ∈ A0(V ) there is a
linear map B sending x to (0, . . . , 0,−1). The statement in [21, 4.7] implies that the
definable set W ⊂ (R>0)n has dimension less than or equal to m− 1, hence A0(W ) is a
polyhedral set of dimension less than or equal to m− 1 (by the inductive hypothesis). By
the previous theorem a neighborhood of the ray {λx | λ ≥ 0} in A0(V ) is the cone over
a neighborhood of 0 in A0(W ), hence it is a polyhedral complex of dimension less than
or equal to m. By compactness of the sphere Sn−1, A0(V ) can be covered by a finite
number of such neighborhoods, hence it is a polyhedral complex of dimension less than
or equal to m. 2

Note that the statement about the dimension can be false for a general set. See Figure 4
for an example.

Moreover, it is not possible to give more than an inequality, as for every s ≤ m
it is always possible to find a semi-algebraic set V ⊂ (R>0)

m such that dimV = m
and dimA0(V ) = s. For example take the parallelepiped V = [1, 2]m−s × (R>0)

s ⊂
(R>0)

m, with A0(V ) = {0}m−s × (R>0)
s. It is also possible to find counterexamples

of this kind where V is the intersection of (R>0)
m+1 with an algebraic hypersurface. For

example let Sm−s ⊂ (R>0)
m−s+1 be the sphere with center (2, . . . , 2) and radius 1, then

V = Sm−s× (R>0)
s ⊂ (R>0)

m+1 has dimension m, butA0(V ) = {0}m−s+1× (R>0)
s

has dimension s.
It is also possible to find a semi-algebraic set V that is the intersection of (R>0)

n

with an irreducible pure-dimensional smooth hypersurface, and such that its logarithmic
limit set A0(V ) is not pure-dimensional, see for example Figure 5. Note that the product
V × Sh, with Sh the sphere with center (2, . . . , 2) and radius 1 as above, is again the
intersection of (R>0)

n+h+1 with an irreducible pure-dimensional smooth variety, and its
logarithmic limit set is lower dimensional and not pure-dimensional.

Figure 4. If V = {(x, y) ∈ (R>0)
2 | y = sin 1

x} (left picture), then A0(V ) = {(x, y) ∈
R2 | y ≤ 0, x ≤ 0 or x ≥ 0, y = −x} (right picture).
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Figure 5. If V = {(x, y, z) ∈ (R>0)
3 | x = (y−1)2 +(z−1)2} (left picture), thenA0(V )

contains a ray along the direction (−1, 0, 0) that is not contained in any two-dimensional
face, and a two-dimensional part made up of three infinite two-dimensional faces in the
half-space x ≥ 0 (right picture).

4 Non-Archimedean description

4.1 The Hardy field. Let S be a set of symbols expanding OS, and let R = (R, a) be
an o-minimal S-structure expanding R (see subsection 2.3 for definitions).

The Hardy field of R can be defined in the following way. If f, g : R>0 −→ R are two
definable functions, we say that they have the same germ near zero, and we write f ∼ g,
if there exists an ε > 0 such that f|(0,ε) = g|(0,ε). The Hardy field can be defined as the set
of germs of definable functions near zero: H(R) = {f : R>0 −→ R | f definable }/ ∼.
We will denote by [f ] the germ of a function f .

For every element a ∈ R, the constant function with value a defines a germ that is
identified with a. This defines an embedding R −→ H(R). Every relation in the structure
R defines a corresponding relation onH(R), and every function in the structure R defines
a function on H(R), hence the Hardy field H(R) can be endowed with an S-structure
H(R). Given an LS-formula ϕ(x1, . . . , xn), and given definable functions f1, . . . , fn,
we have

H(R) � ϕ([f1], . . . , [fn]) ⇐⇒ ∃ε > 0 : ∀t ∈ (0, ε) : R � ϕ(f1(t), . . . , fn(t)).

See [7, Section 5.3] for precise definitions and proofs. In particular the S-structure
H(R) is an elementary extension of the S-structure R. Note that the operations + and ·
turn H(R) into a field, the order ≤ turns it into an ordered field, and also note that this
field is real closed. Moreover, the S-structure H(R) is o-minimal.

Suppose that S′ is an expansion of S, and that R′ is an S′-structure expanding R.
Then all functions that are definable in R are also definable in R′. This defines an in-
clusion H(R) ⊂ H(R′). Note that, by restriction, R′ has an S-structure induced by his
S′-structure. If ϕ(x1, . . . , xn) is an LS-formula, and h1, . . . , hn ∈ H(R), then

H(R) � ϕ(h1, . . . , hn) ⇐⇒ H(R′) � ϕ(h1, . . . , hn).
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In other words the S-structure on H(R′) is an elementary extension of H(R).
If R is polynomially bounded, for every definable function f whose germ is not 0,

there exists r in the field of exponents and c ∈ R \ {0} such that

lim
x→0+

f(x)

xr
= c.

If h is the germ of f , we denote the exponent r by v(h). The map v : H(R) \ {0} −→ R
is a real valued valuation, turning H(R) in a non-Archimedean field of rank one. The
image group of the valuation is the field of exponents of R, denoted by Λ. The valuation
has a natural section, the map

Λ 3 r −→ xr ∈ H(R).

The valuation ring, denoted by O, is the set of all germs bounded in a neighborhood of
zero, and the maximal ideal m of O is the set of all germs infinitesimal in zero. The
valuation ring O is convex with respect to the order ≤, hence the valuation topology
coincides with the order topology. The map O −→ R sending every element of O to
its value in zero has kernel m, hence it identifies in a natural way the residue field O/m
with R. We will usually denote by t ∈ H(R) the germ of the identity function. We have
v(t) = 1.

As an example we can describe the fieldH(R). Every element of this field is algebraic
over the fraction field R(t). Hence H(R) is the real closure of R(t), with reference to the
unique order such that t > 0 and ∀x ∈ R>0 : t < x. The image of the valuation is Q.
Consider the real closed field of formal Puiseux series with real coefficients, R((tQ)) =⋃
n≥1 R((t1/n)). The elements of this field have the form xr(s(x1/n)), where r ∈ Z and

s is a formal power series. We have R(t) ⊂ R((tQ)) as ordered fields, hence H(R) ⊂
R((tQ)). The elements of H(R) are the elements of R((tQ)) that are algebraic over R(t).
For these elements the formal power series s is locally convergent.

Another example is the field H(Ran∗), see [22]. By [22, Theorem B], for every
element h of this field, there exists a number r ∈ R, a formal power series

F =
∑
α∈R≥0

cαX
α

and a radius δ ∈ R>0 such that cα ∈ R, {α | cα 6= 0} is well ordered, the series∑
α |cα|δα < +∞, (hence F is convergent and defines a continuous function on [0, δ],

analytic on (0, δ)) and
h = [xrF (x)].

Let F be a real closed field extending R. The convex hull of R in F is a valuation
ring denoted by O≤. This valuation ring defines a valuation v : F∗ −→ Λ, where Λ is an
ordered abelian group. We say that F is a real closed non-Archimedean field of rank one
extending R if Λ has rank one as an ordered group, or, equivalently, if Λ is isomorphic
to an additive subgroup of R. Hence real closed non-Archimedean fields of rank one
extending R have a real valued valuation (non necessarily surjective) well defined up to
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a scaling factor. This valuation is well defined when we choose an element t ∈ F with
t > 0 and v(t) > 0, and we choose a scaling factor such that v(t) = 1. Now a valuation
v : F −→ R is well defined, with image v(F∗) = Λ ⊂ R.

Consider the subfield R(t) ⊂ F. The order induced by F has the property that t > 0
and ∀x ∈ R>0 : t < x. Hence F contains the real closure of R(t) with reference to this
order, i.e. H(R). Moreover the valuation v on F restricts to the valuation we have defined
on H(R), as, if O≤ is the valuation ring of F, O≤ ∩ H(R) is precisely the valuation
ring O of H(R). In other words every non-Archimedean real closed field F of rank one
extending R is a valued extension of H(R).

4.2 Non-Archimedean amoebas. Let F be a non-Archimedean real closed field of
rank one extending R, with a fixed real valued valuation v : F∗ −→ R. By convention,
we define v(0) =∞, an element greater than any element of R. The map

F 3 h −→‖ h ‖= exp(−v(h)) ∈ R≥0

is a non-Archimedean norm. The component-wise logarithm map can be defined also on
F by

Log : (F>0)
n 3 (h1, . . . , hn) −→

(
log(‖ h1 ‖), . . . , log(‖ hn ‖)

)
∈ Rn.

Note that log(‖ h ‖) = −v(h). If V ⊂ (F>0)
n, the logarithmic image of V is the image

Log(V ).
Let S be a set of symbols expanding OS, and let (F, a) be an S-structure expanding

the OS-structure on the non-Archimedean real closed field F of rank one extending R. If
V ⊂ (F>0)

n is a definable set in (F, a), we define the non-Archimedean amoeba of V as
the closure in Rn of the logarithmic image of V , and we will write A(V ) = Log(V ).

The case we are more interested in is when R = (R, a) is an o-minimal, polynomially
bounded S-structure expanding R, andH(R) is the Hardy field, with its natural valuation
v and its natural S-structure. Non-Archimedean amoebas of definable sets of H(R) are
closely related with logarithmic limit sets of definable sets of R.

Let F ⊂ K be two real closed fields. Let S be a set of symbols expanding OS, let
(F, a), (K, b) be S-structures expanding the OS structure on the real closed fields and
such that K is an elementary extension of F. Let V ⊂ Fn be a definable set in (F, a). We
will denote by V K the extension of V to the structure (K, b).

For example, if V ⊂ Rn is a definable set in R, we can always define an extension
V H(R) ⊂ H(R)

n of V to H(R).

Lemma 4.1. Let R be an o-minimal polynomially bounded structure. Let V ⊂ (R>0)
n

be a definable set. Then (0, . . . , 0,−1) ∈ A0(V )⇐⇒ (0, . . . , 0,−1) ∈ Log
(
V H(R)

)
.

Proof. Suppose that (0, . . . , 0,−1) ∈ A
(
V H(R)

)
. Then there is a point (x1, . . . , xn) ∈

V H(R) such that v(xn) = 1 and v(xi) = 0 for all i < n. If f1, . . . , fn are definable
functions such that xi = [fi], then ∃ε > 0 : ∀t ∈ (0, ε) : (f1(t), . . . , fn(t)) ∈ V .
Moreover, when t → 0 we have that fn(t) → 0 and fi(t) → ai > 0 for i < n. Hence
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V contains a sequence tending to (a1, . . . , an−1, 0) with a1, . . . an−1 6= 0, and A0(V )
contains (0, . . . , 0,−1).

Vice versa, suppose that (0, . . . , 0,−1) ∈ A0(V ). Then, by Theorem 3.6 there exists
a sequence (x(k)) in V such that (x(k)) → (a1, . . . , an−1, 0), where a1, . . . , an−1 > 0.
Let ε be a number less than all the numbers a1, . . . , an−1, and consider the set

{x ∈ R | ∃x1, . . . , xn−1 : |xi − ai| <
1
2
ε and (x1, . . . , xn−1, x) ∈ V }.

As this set is definable, and as it contains a sequence converging to zero, it must contain
an interval of the form (0, δ), with δ > 0. In one formula:

∀x ∈ (0, δ) : ∃x1, . . . , xn−1 : |xi − ai| <
1
2
ε and (x1, . . . , xn−1, x) ∈ V.

This sentence can be turned into a first order LS-formula using a definition of V . This
formula must also hold for H(R). We can choose an x ∈ H(R), with x > 0 and
v(x) = 1. Then x < δ, hence

∃x1, . . . , xn−1 : |xi − ai| <
1
2
ε and (x1, . . . , xn−1, x) ∈ V H(R).

Now v(xi) = 0 for all i > 1, as |xi − ai| < 1
2ε. Hence Log(x1, . . . , xn−1, x) =

(0, . . . , 0,−1). 2

Theorem 4.2. Let R be an o-minimal polynomially bounded structure with field of expo-
nents Λ. Let V ⊂ (R>0)

n be a definable set. Then

A0(V ) ∩ Λn = Log
(
V H(R)

)
.

In particular, Log
(
V H(R)

)
is a closed subset of Λn.

Proof. As Log
(
V H(R)

)
⊂ Λn, we only need to prove that for all x ∈ Λn, x ∈ A0(V )⇔

x ∈ Log
(
V H(R)

)
. We choose a matrix B with entries in Λ sending x to (0, . . . , 0,−1).

Then we conclude by the previous lemma applied to the definable set B(V ). For the last
statement, recall thatA0(V ) is a closed subset of Rn, henceA0(V )∩Λn is a closed subset
of Λn. 2

Theorem 4.3. Let F ⊂ K be two non-Archimedean real closed fields of rank one extend-
ing R, with a choice of a real valued valuation defined by an element t ∈ F. Denote the
value groups by Λ = v(F∗) and Ω = v(K∗). Let S be a set of symbols expanding OS,
let (F, a), (K, b) be S-structures expanding theOS structure on the real closed fields and
such that K is an elementary extension of F. Let V be a definable set in (F, a), and V K

be its extension to (K, b). Then Log(V ) ⊂ Λn is dense in Log
(
V K) ⊂ Ωn.

Proof. Suppose, by contradiction, that x ∈ Log
(
V K) and it is not in the closure of

Log(V ). Then there exists an ε > 0 such that the cube

C = {y ∈ Rn | |y1 − x1| < ε, . . . , |yn − xn| < ε}
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does not contain points of Log(V ). Let h ∈ V K be an element such that Log(h) = x, and
let d ∈ F be an element such that 0 < v(d) < ε. Consider the cube

E =
(h1

d
, h1d

)
×
(h2

d
, h2d

)
× · · · ×

(hn
d
, hnd

)
⊂ Kn.

The image Log(E) is contained in C, hence E ∩ V is empty. But, as (K, b) is an ele-
mentary extension of (F, a), also E ∩ V K is empty. This is a contradiction as h ∈ E and
h ∈ V K. 2

Corollary 4.4. Let S be a set of symbols expanding OS, and let R = (R, a) be an o-
minimal polynomially bounded S-structure with field of exponents Λ, expanding R. Let
V ⊂ (R>0)

n be a definable set in R. Suppose that there exists a subfield Ω ⊂ R such
that Λ ⊂ Ω and RΩ is o-minimal and polynomially bounded. Then A0(V ) ∩ Λn is dense
in A0(V ) ∩ Ωn.

Proof. Consider the Hardy fields H(R) and H(RΩ). By Theorem 4.2, A0(V ) ∩ Λn =

Log
(
V H(R)

)
and A0(V ) ∩ Ωn = Log

(
V H(RΩ)

)
. As we said above, the S-structures

on H(R) and H(RΩ) are elementary equivalent. The statement follows by the previous
theorem. 2

Corollary 4.5. Let S be a set of symbols expandingOS, and let R = (R, a) be a regular
polynomially bounded S-structure with field of exponents Λ. Let V ⊂ (R>0)

n be a set
that is definable in R. We denote by V H(R) the extension of V to H(R) and by V H(RR)

the extension of V to H(RR). Then

A0(V ) = Log
(
V H(RR)

)
.

Moreover the subset A0(V ) ∩ Λn is dense in A0(V ), and, as A0(V ) is closed,

A
(
V H(R)

)
= A

(
V H(RR)

)
= Log

(
V H(RR)

)
.

Corollary 4.6. Let V ⊂ (R>0)
n be a semi-algebraic set. Then A0(V ) ∩ Qn is dense in

A0(V ). Let F be a non-Archimedean real closed field of rank one extending R, and let
V F be the extension of V to F. Then

A0(V ) = A
(
V F).

If F extends H(RR
), then

A
(
V F) = Log

(
V F).

As a further corollary, we prove the following proposition, that will be needed later.

Proposition 4.7. Let V ⊂ (R>0)n be a set definable in a regular polynomially bounded
structure, and let π : Rn −→ Rm be the projection on the first m coordinates (with
m < n). Then we have

A0(π(V )) = π(A0(V )).
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Proof. We denote by πH(R) : H(R)
n −→ H(R)

m
the projection on the first m co-

ordinates. The proposition follows easily from Corollary 4.5 and from the fact that
πH(R)

(
V H(R)

)
= (π(V ))

H(R). 2

4.3 Patchworking families. Let S be a set of symbols expanding OS, and let R =
(R, a) be an S-structure expanding R. Let F be a non-Archimedean real closed field of
rank one extending R, and let (F, b) be an S-structure expanding the OS structure on the
real closed field and extending the S-structure on R. If V is a definable set in (F, a), we
have defined the non-Archimedean amoeba A(V ) as the closure in Rn of the logarithmic
image Log(V ). Up to now, we studied the properties of non-Archimedean amoebas only
in the particular case in which V is the extension of a definable set in R, and this seems
an essential requirement because we used extensively the properties of logarithmic limit
sets to study non-Archimedean amoebas. This particular case can be called the constant
coefficient case, because one can consider the elements of F as real valued functions (this
interpretation is clear in the case of Hardy fields) and the elements of R as constant real
valued functions, and the extension to F of a definable set in R is definable with real
coefficients.

The purpose of this subsection is to show that with similar methods one can study
the properties of general definable sets. We will restrict ourself to the case where (F, b)
is the S-structure H(R) on the Hardy field of R. The idea is to define a one parame-
ter family of definable sets in R, and to show that the logarithmic limit of this family is
the non-Archimedean amoeba. Families constructed with this idea are sometimes called
patchworking families in the literature. After having shown that the non-Archimedean
amoebas are polyhedral complexes with controlled dimension, we will show how their
local structure around a point λ is described by logarithmic limit sets of a particular de-
finable set in R that we will call the initial set of λ.

If V ⊂ (H(R)>0)
n is a definable set, there exist a first order LS-formula ϕ(x1, . . . ,

xn, y1, . . . , ym), and parameters a1, . . . , am ∈ H(R) such that

V = {(x1, . . . , xn) | ϕ(x1, . . . , xn, a1, . . . , am)}.

Choose definable functions f1, . . . , fm such that [fi] = ai. These data define a definable
set in R:

Ṽ =
{

(x1, . . . , xn, t) ∈ (R>0)
n+1 | ϕ(x1, . . . , xn, f1(t), . . . , fm(t))

}
.

Suppose that ϕ′(x1, . . . , xn, y1, . . . , ym′) is another formula defining V with parameters
a′1, . . . , a

′
m′ , and that f ′1, . . . , f

′
m′ are definable functions such that [f ′i ] = a′i. These data

define

Ṽ ′ =
{

(x1, . . . , xn, t) ∈ (R>0)
n+1 | ϕ′(x1, . . . , xn, f

′
1(t), . . . , f ′m′(t))

}
.

As both formulae define V we have

H(R) � ∀x1, . . . , xn : ϕ(x1, . . . , xn, a1, . . . , am) ⇐⇒ ϕ′(x1, . . . , xn, a
′
1, . . . , a

′
m′).
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As we said above, we have: ∃ε > 0 : ∀t ∈ (0, ε) : R � ∀x1, . . . , xn:

ϕ(x1, . . . , xn, f1(t), . . . , fm(t)) ⇐⇒ ϕ′(x1, . . . , xn, f
′
1(t), . . . , f ′m′(t)).

Hence Ṽ ∩
(
Rn × (0, ε)

)
= Ṽ ′ ∩

(
Rn × (0, ε)

)
, and the set Ṽ is “well defined for

small enough values of t”. Actually we prefer to see the set Ṽ as a parametrized family:

Vt =
{

(x1, . . . , xn) ∈ (R>0)
n | (x1, . . . , xn, t) ∈ Ṽ

}
.

We can say that the set V determines the germ near zero of this parametrized family.
We will use the notation V∗ = (Vt)t>0 for the family, and we will call these families
patchworking families determined by V , as they are a generalization of the patchworking
families of [24].

Given a patchworking family V∗, we can define the tropical limit of the family as

A0(V∗) = lim
t→0
At(Vt) = lim

t→0
Log 1

t
(Vt),

where the limit is in the sense of subsection 2.1. This is a closed subset of Rn. Note that
this set only depends on V . If V is the extension to H(R) of a definable subset W ⊂ Rn,
then the patchworking family Vt is constant: Vt = W , and the tropical limit is simply the
logarithmic limit set: A0(V∗) = A0(W ).

Consider the logarithmic limit set of Ṽ :

A0(Ṽ ) = lim
t→0
At(Ṽ ) ⊂ Rn+1.

As in subsection 3.2, we consider the set

H =
{

(x1, . . . , xn) ∈ Rn | (x1, . . . , xn,−1) ∈ A0(Ṽ )
}
.

Note that Log−1
1
t

(Rn×{−1}) = (R>0)
n×{t}. HenceA0(V∗) = limt→0 Log 1

t
(Vt) = H .

Now consider the extension Ṽ H(R) of the Ṽ to the Hardy field H(R). By the results
of the previous section, we know that A

(
Ṽ H(R)

)
= A0(Ṽ ). If we denote by t ∈ H(R)

the germ of the identity function, we have that

V = {(x1, . . . , xn) | (x1, . . . , xn, t) ∈ Ṽ H(R)},

as, for i ∈ {1, . . . ,m}, we have fi(t) = ai. Hence, as log |t| = −1, A(V ) ⊂ H =
A0(V∗).

Lemma 4.8. (0, . . . , 0) ∈ A0(V∗)⇔ (0, . . . , 0) ∈ Log(V ).

Proof. The forward implication follows from what we said above. The converse follows
from the second part of the proof of Lemma 4.1, applied to the set Ṽ . 2
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Let λ ∈ Λn. We define a twisted set

V λ =
{
x ∈ H(R)

n | ϕ(t−λ1x1, . . . , t
−λnxn, a1, . . . , am)

}
.

Then λ ∈ Log(V )⇔ (0, . . . , 0) ∈ Log(V λ). Then we define

Hλ =
{

(x1, . . . , xn) ∈ Rn | (x1, . . . , xn,−1) ∈ A0(Ṽ λ)
}
.

Now Hλ is simply H translated by the vector −λ. Hence we get:

Lemma 4.9. For all λ ∈ Λ, we have λ ∈ A0(V∗)⇔ λ ∈ Log(V ).

Using these facts we can extend the results of the previous sections about logarithmic
limit sets and their relations with non-Archimedean amoebas to tropical limits of patch-
working families. For example we can prove the following statements.

Theorem 4.10. Let S be a structure expanding OS, and let R = (R, a) be a regular
polynomially bounded S-structure with field of exponents Λ. Let V ⊂ H(R) be a defin-
able set in the S-structure H(R), and let V∗ be a patchworking family determined by V .
Then the following facts hold:
(1) A0(V∗) is a polyhedral complex with dimension less than or equal to the dimension

of V .
(2) A0(V∗) ∩ Λn = Log(V ).
(3) A0(V∗) = A(V ).
(4) A0(V∗) ∩ Λn is dense in A0(V∗).

Proof. Every statement follows from the corresponding statement about logarithmic limit
sets, and from the facts exposed above. 2

For every point λ ∈ Λ, the twisted set V λ defines a germ of patchworking family
V λ∗ = (V λt )t>0, where for every t, V λt is a definable subset of (R>0)

n. Consider the set

V λ0 = lim
t→0

V λt ,

where the limit is defined as in subsection 2.1. The set V λ0 is a definable subset of (R>0)
n,

and its logarithmic limit setA0(V λ0 ) can be used to describe a neighborhood of λ inA(V ),
as we will state in the next theorem. The proof follows from Theorem 3.10 applied to the
definable set Ṽ λ. The set V λ0 , in the language of Theorem 3.10, is called W .

Theorem 4.11. Let S be a set of symbols expanding OS, and let R = (R, a) be an
S-structure expanding R that is o-minimal and polynomially bounded, with field of expo-
nents Λ. Let V ⊂ H(R) be a definable set in the S-structure H(R). Then we have

∀λ ∈ Λn : λ ∈ A(V ) ⇐⇒ V λ0 6= ∅.

Moreover, if Λ = R, for all λ ∈ R, there exists a neighborhood U of λ in A(V ) such that
the translation of U by −λ is a neighborhood of (0, . . . , 0) in A0(V λ0 ).
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Proof. It follows from the arguments above and from Theorem 3.10. 2

The set V λ0 is well defined for all λs, and it depends only on λ. It can be called the
initial set of λ, as it plays the role of the initial ideal of [17]. The difference is that V λ0 is
a geometric object, while the initial ideal of [17] is an algebraic object.

5 Comparison with other constructions

5.1 Complex algebraic sets. Logarithmic limit sets of complex algebraic sets are a
particular case of logarithmic limit sets of real semi-algebraic sets, in the following sense.
Let V ⊂ Cn be a complex algebraic set, and consider the real semi-algebraic set

|V | =
{
x ∈ (R>0)

n | ∃z ∈ V : |z| = x
}
.

The logarithmic limit set of V as defined in [3] is precisely the logarithmic limit set of
|V | in our notation. We will write A0(V ) = A0(|V |). Hence all the results we got about
logarithmic limit sets of real semi-algebraic sets produce an alternative proof of the same
results for complex algebraic sets, that were originally proved partly in [3] and [4].

Even the description of logarithmic limit sets via non-Archimedean amoebas can be
translated to complex algebraic sets. Let F be a non-Archimedean real closed field of rank
one extending R, and let v be a choice of a real valued valuation on F, as in subsection 4.1.
The field K = F[i] is an algebraically closed field extending C, with an extended valuation
v : K∗ −→ R defined by v(a + bi) = min(v(a), v(b)). The component-wise logarithm
map can be extended to the field K by

Log : K∗n 3 (z1, . . . , zn) −→ (−v(z1), . . . ,−v(zn)) ∈ Rn.

On K there is also the complex norm | · | : K −→ F≥0 defined by |a + bi| =
√
a2 + b2.

Now if V is an algebraic set in Kn, the set

|V | =
{
x ∈ (F>0)

n | ∃z ∈ V : |z| = x
}

is a semi-algebraic set in Fn. The logarithmic image of V is defined as the image Log(V ),
and the non-Archimedean amoeba A(V ) is defined as the closure of this image. Clearly,
we have Log(V ) = Log(|V |) andA(V ) = A(|V |). Moreover, if V ⊂ Cn is an algebraic
set, and V K ⊂ Kn is its extension to K, then (|V |)K = |V K|. These facts directly give the
relation between logarithmic limit sets of complex algebraic sets and non-Archimedean
amoebas in algebraically closed fields.

The same relation holds with patchworking families. Let R = (R, a) be a regular
polynomially bounded structure with field of exponents Λ, let F = H(R) and K =
H(R)[i] and let V ⊂ Kn be an algebraic set. There are polynomials f1, . . . , fm ∈
K[x1, . . . , xn] such that V = V (f1, . . . , fm). Every polynomial fj has the form

fj =
∑
ω∈Zn

(aj,ω + ibj,ω)xω,



Logarithmic limit sets of real semi-algebraic sets 25

where aj,ω, bj,ω ∈ H(R). Choose representatives functions αj,ω, βj,ω such that [αj,ω] =
aj,ω, [βj,ω] = bj,ω . This choice defines families of polynomials

fj,t =
∑

ω∈S(f)

(αj,ω(t) + iβj,ω(t))xω

and a corresponding family of algebraic sets in Cn

Vt = V (f1,t, . . . , fm,t).

We will call these families patchworking families because they generalize the patchwork-
ing polynomial of [11, Part 2], and we will denote the family by V∗ = (Vt). The family
V∗ depends of the choice of the polynomials fj and of the definable functions αj,ω, βj,ω .
If we change these choices we get another patchworking family coinciding with V∗ for
t ∈ (0, ε). The tropical limit of one such family is

A0(V∗) = lim
t→0
At(Vt)

where the limit is defined as in subsection 2.1. As before, |V | is a semi-algebraic set in
H(R)

n, and if |V |∗ = (|V |t) is a patchworking family defined by |V |, then there exists
an ε > 0 such that for t ∈ (0, ε) we have |Vt| = |V |t. Hence A0(V∗) = A0(|V |∗),
and we can get the properties of the tropical limit of complex patchworking families as a
corollary of the properties of tropical limits of real patchworking families.

Let f ∈ R[x1, . . . , xn]. Let V be the intersection of the zero locus of f and (R>0)
n,

and let VC be the zero locus of f in Cn. As V ⊂ VC, the logarithmic limit set of V is
included in the logarithmic limit set of VC. Moreover, as VC is a complex hypersurface, it
is possible to give an easy combinatorial description of A0(VC), it is simply the dual fan
of the Newton polytope of f . Unfortunately, it is not possible, in general, to use this fact
to understand the combinatorics ofA0(V ). There are examples where V is an irreducible
hypersurface, and A0(V ) is a subpolyhedron of A0(VC) that is not a subcomplex. For
example, consider the real algebraic set W in Figure 6; the logarithmic limit set of W is
only the ray in the direction (−1, 0, 0), but this ray lies in the interior of a face ofA0(WC),
for the details see the end of the next subsection.

5.2 Positive tropical varieties. In this subsection we compare the notion of non-Archi-
medean amoebas for real closed fields that we studied in this paper with a similar object
called positive tropical variety studied in [18].

To be consistent with [18], we will denote by K =
⋃∞
n=1 C((t1/n)) the algebraically

closed field of formal Puiseux series with complex coefficients, whose set of exponents is
an arithmetic progression of rational numbers, and by F =

⋃∞
n=1 R((t1/n)) the subfield

of series with real coefficients. K is the algebraic closure of F. These fields have a natural
valuation v : K −→ Q, with valuation ring O, and residue map r : O −→ C. Note that
the valuation v is compatible with the order of F, i.e. the valuation ring O ∩ F is convex
for the order, and that r(O ∩ F) = R.
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Figure 6. W = {(x, y, z) ∈ R3 | x2(1 − (z − 2)2) = x4 + (y − 1)2} is an irreducible
surface, but it has a “stick”, the line {y = 1, x = 0}. The logarithmic limit set of
W ∩ (R>0)

3 is only the ray in the direction (−1, 0, 0), but this ray is contained in the
interior part of a face of the dual fan of the Newton polytope of the defining polynomial
x2(1− (z − 2)2)− x4 − (y − 1)2.

We will denote by F>0 the set of positive elements of the field F. Following [18] we
will also use the notation:

F+ = {z ∈ K | r
(
zt−v(z)

)
∈ R>0}.

Let V be an algebraic set in Kn. The set

V>0 = V ∩ (F>0)
n

is a semi-algebraic set, whose non-Archimedean amoeba A(V>0), i.e. the closure of the
logarithmic image Log(V>0), has been studied in subsection 4.3. In [18] a similar defi-
nition is given. The positive part of V is V+ = V ∩ (F+)

n. The closure of Log(V+) is
called positive tropical variety, and it is denoted by Trop+(V ). From the definition it is
clear that A(V>0) ⊂ Trop+(V ).

In many examples the sets A(V>0) and Trop+(V ) coincide, but it is also possible to
construct examples where the inclusion is strict. For example

V =
{

(x1, x2) ∈ K2 | x2
1 + (x2 − 1)

2 − x3
1 = 0

}
.

Then V>0 is the extension to F of the set in Figure 7, and

A(V>0) = {(x1, x2) ∈ R2 | x1 = 0, x2 ≤ 0 or x1 ≥ 0, 2x2 = 3x1}
Trop+(V ) = A(V>0) ∪ {x2 = 0, x1 ≤ 0}.

A more interesting example where A(V>0) ( Trop+(V ) is the following: consider
the set

W =
{

(x, y, z) ∈ R3 | x2(1− (z − 2)2) = x4 + (y − 1)2},
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Figure 7. If V = {(x, y) ∈ R2 | x2 + y2 + 1 = 2y + x3} with an isolated point in (0, 1)

(left picture), then A0(V ∩ (R>0)
2
) = {(x, y) ∈ R2 | x = 0, y ≤ 0 or x ≥ 0, 2y = 3x}

(right picture).

the set in Figure 6. This set is a sort of Cartan’s umbrella, an irreducible algebraic set of
dimension 2, with a “stick” of dimension 1, the line {y = 1, x = 0}. Note that the stick
is not contained in the positive part W ∩ (R>0)

3. Given a t ∈ (0, 1), the amoebaAt(W ∩
(R>0)

3
) goes to infinity only in a neighborhood of the ray in the direction (−1, 0, 0),

hence the logarithmic limit setA0(W ∩(R>0)
3
) is only the ray in the direction (−1, 0, 0).

Now define V as the extension of W to F, V = W F. We have that A(V>0) = A0(W ∩
(R>0)

3
), the ray in the direction (−1, 0, 0). This ray is in the interior part of a face of

Trop+(V ). Hence not only the two sets do not coincide, but A(V>0) is not a polyhedral
subcomplex of Trop+(V ).

6 Tropical description

Let V ⊂ Cn be a complex algebraic variety. The logarithmic limit set A0(V ) can be
described as the intersection of a finite set of tropical zero loci of tropical polynomials.
In this section we want to obtain a similar result for logarithmic limit sets of real semi-
algebraic sets.

A tropical polynomial is a polynomial over the tropical semifield (for the definition
of this OS-structure, see subsection 6.1 below). Given a polynomial f with complex
coefficients, there is a well defined notion of tropicalization, that associates to f a tropical
polynomial called the tropicalization of f (see [17]).

There is a notion of tropical zero locus of a tropical polynomial (see [17]), with the
property that if f is a polynomial with complex coefficients, the tropical zero locus of the
tropicalization of f is equal to the logarithmic limit set of the hypersurface defined by f .

A similar result for logarithmic limit sets of general complex algebraic varieties is
more delicate. We say that a finite set of polynomials f1, . . . , fs defines V if

V = {z ∈ Cn | f1(z) = · · · = fs(z) = 0}.
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If f1, . . . , fs form a set of polynomials that defines V , then the logarithmic limit set of
V is contained in the intersection of the tropical zero loci of the tropicalizations of the
polynomials f1, . . . , fs, but sometimes this inclusion is strict. Anyway, a theorem proved
in [6] shows that there always exists a finite set of polynomials that defines V with the
property that the intersection of the tropical zero loci of the tropicalizations of the polyno-
mials in the set is equal to the logarithmic limit set of V . Such a finite set of polynomials
is called a tropical basis of V . Tropical bases are a fundamental tool in computational
tropical geometry.

In this section we find similar results for logarithmic limit sets of real semi-algebraic
sets. Semi-algebraic sets are not simply defined by polynomial equations, one needs to
use first order formulae in the languageOS, and we will also use formulae in the language
OSR. Instead of defining the notion of tropicalization of polynomials, we will define the
more general notion of dequantization of formulae, see subsection 6.2.

The notion of zero locus of a tropical polynomial is not needed here, that notion
is only suitable for complex varieties, or for varieties defined over algebraically closed
fields. Here, in the real setting, we will use the different but very natural notion of set
defined by a dequantized formula to replace it.

In Section 6.3 we show that if the formula is a positive formula (see below) defining V ,
then A0(V ) is contained in the set defined by the dequantized formula. Positive formulae
are very good ways to describe closed semi-algebraic sets.

Finally, in subsection 6.4, we will show that if V is a closed semi-algebraic set, then
there exists a positive formula such that the set defined by the dequantization of this
formula is equal to A0(V ). In a sense, this result is the analog, for semi-algebraic sets, of
the existence of a tropical basis.

6.1 Maslov dequantization. Every real number t ∈ (0, 1) defines an analytic function:

R>0 3 z −→ log( 1
t ) z =

( −1
loge t

)
loge z ∈ R.

This function is bijective, with inverse x −→ t−x, and it preserves the order ≤. The
operations (‘+’ and ‘·’) are transformed via conjugation in the following way:

x⊕t y = log( 1
t )(t
−x + t−y)

x�t y = log( 1
t )(t
−x · t−y) = x+ y

Hence every t induces an OS-structure on R:

Rt =
(
R, {≤}, {⊕t,�t}, ∅

)
.

This structure is isomorphic to R>0, hence it is an ordered semifield. In the limit for t
tending to zero we have limt→0+ x⊕t y = max(x, y).

The limit OS-structure is called the tropical semifield:

Rtrop =
(
R, {≤}, {max,+}, ∅

)
.
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This is again an ordered semifield, we will denote its operations by⊕ = max and� = +.
Note the inequality

x1 ⊕ · · · ⊕ xn ≤ x1 ⊕t · · · ⊕t xn ≤ (x1 ⊕ · · · ⊕ xn) + log 1
t
n.

In other words the convergence of the family Rt to the structure Rtrop is uniform. This
construction is usually called Maslov dequantization.

Note that if α ∈ R>0, the function R>0 3 x −→ xα ∈ R>0 is transformed, via
conjugation with the map log 1

t
, in the map

R 3 x −→ log 1
t

(
(t−x)

α)
= αx.

As this map does not depend on t, it induces also a map in the limit structure Rtrop. With
these maps, Rt and Rtrop become OSR-structures.

The family of maps Logt, which we used to construct the logarithmic limit sets, is the
Maslov dequantization applied coordinate-wise to (R>0)

n.

6.2 Dequantization of formulae. An LOSR -term u(x1, . . . , xn, y1, . . . ym) (see [9,
Chapter II, Definition 3.1]) and the constants a1, . . . , am ∈ R>0 define a function

U : (R>0)
n 3 (x1, . . . , xn) −→ u(x1, . . . , xn, a1, . . . , am) ∈ R>0.

For every t, this function defines, by conjugation with the map log 1
t
, a function on Rn

corresponding to the term u where the operations are interpreted with the operations of
Rt, and every constant ai is interpreted as log 1

t
(ai):

Ut = log 1
t
◦U ◦

(
Log 1

t

)−1
: Rn −→ R.

Lemma 6.1. Let U0 : Rn −→ R be the function defined by the term u where the opera-
tions are interpreted with the operations of Rtrop, and every constant ai is interpreted as
0. Then

∀x ∈ Rn : U0(x) ≤ Ut(x) ≤ U0(x) + log 1
t
C,

where C is a constant depending only on the term u and the coefficients ai. In particular
the family of functions Ut uniformly converges to the function U0.

Proof. By induction on the complexity of the term. If u = x1, then U0 = Ut and C = 1.
If u = y1 then Ut = log 1

t
a1 and U0 = 0, hence C = a1. If u = vα, where α ∈ R,

then V0 ≤ Vt ≤ V0 + log 1
t
C, hence U0 ≤ Ut ≤ U0 + log 1

t
Cα. If u = v · w, then

V0 ≤ Vt ≤ V0 +log 1
t
C andW0 ≤Wt ≤W0 +log 1

t
D, hence U0 ≤ Ut ≤ U0 +log 1

t
CD.

If u = v + w, then V0 ≤ Vt ≤ V0 + log 1
t
C and W0 ≤ Wt ≤ W0 + log 1

t
D, hence

U0 ≤ Ut ≤ U0 + log 1
t

2 max(C,D). 2

If ϕ(x1, . . . , xn, y1, . . . , ym) is an LOSR -formula and a1, . . . , am are constants, they
define the set

V =
{

(x1, . . . , xn) ∈ (R>0)
n | ϕ(x1, . . . , xn, a1, . . . , am)

}
.
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We will denote by ϕt the formula ϕ where the operations are interpreted in the structure
Rt, and ϕ0 the formula ϕ where the operations are interpreted in the structure Rtrop.
Hence

At(V ) = {(x1, . . . , xn) ∈ Rn | ϕt(x1, . . . , xn, log 1
t
a1, . . . , log 1

t
am)}.

Because log 1
t

is a semifield isomorphism, the amoeba At(V ) is described by the same
formula. Anyway it is not always true that

A0(V ) =
{

(x1, . . . , xn) ∈ Rn | ϕ0(x1, . . . , xn, 0, . . . , 0)
}
.

For example if ϕ(x1) = ¬(x ≤ 1), then ϕ0 = ¬(x ≤ 0), but the logarithmic limit set of
{x > 1} is not {x > 0}, but {x ≥ 0}.

6.3 Dequantization of sets. A positive formula is a formula written without the sym-
bols ¬,⇒,⇔. These formulae contain only the connectives ∨ and ∧ and the quantifiers
∀, ∃. Consider the standard OSR-structure on R>0, or one of the OSR-structures Rt or
Rtrop on R. Every subset of (R>0)

n or Rn that is defined by a quantifier-free positive
LOSR -formula in one of these structures is closed, as the set of symbols OSR has only
the relations = and ≤, that are closed, and the functions +, ·, xα, that are continuous.

Proposition 6.2. Let ϕ(x1, . . . , xn, y1, . . . , ym) be a positive LOSR -formula, and let a1,
. . . , am ∈ R>0 be parameters. If V is such that

V ⊂
{

(x1, . . . , xn) ∈ (R>0)
n | ϕ(x1, . . . , xn, a1, . . . , am)

}
,

then
A0(V ) ⊂

{
x ∈ Rn | ϕ0(x1, . . . , xn, 0, . . . , 0)

}
.

Proof. By induction on the complexity of the formula. If ϕ is atomic, then it has the form
u(x1, . . . , xn, y1, . . . , ym)Rv(x1, . . . , xn, y1, . . . , ym), whereR is = or ≤. We have

At(V ) ⊂
{
x ∈ Rn | ϕt(x1, . . . , xn, log 1

t
(a1), . . . , log 1

t
(am)

}
.

We may put all the equations together, one for every t, thus finding a description for the
deformation

D = {(x, t) ∈ Rn × (0, ε) | x ∈ At(V )}
D = {(x1, . . . , xn, t) ∈ Rn × (0, 1) | ϕt(x1, . . . , xn, log 1

t
(a1), . . . , log 1

t
(am)}.

If we consider Ut and Vt as functions on Rn × (0, 1), they can be extended contin-
uously to Rn × [0, 1) defining the extensions on Rn × {0} by U0, V0. Hence we get the
following inclusion for the logarithmic limit set:

A0(V ) ⊂
{
x ∈ Rn | ϕ0(x1, . . . , xn, 0, . . . , 0)

}
.

If ϕ = ψ1 ∨ ψ2 (respectively ϕ = ψ1 ∧ ψ2), then V ⊂ V1 ∪ V2 (respectively V ⊂
V1 ∩ V2), where Vi is defined by ψi. The statement follows from Proposition 2.2.
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If ϕ = ∃xn+1 : ψ, then V is contained in the projection of W , where W is the set
defined by ψ. The statement follows from Proposition 4.7.

If ϕ = ∀xn+1 : ψ, then we denote by W the set defined by ψ. If (0, . . . , 0,−1) ∈
A0(V ), there is a sequence x(k) in V converging to a point (b1, . . . , bn−1, 0) with bi 6= 0.
Then W contains a sequence of lines {(x(k), y) | y ∈ R>0}, hence A0(W ) contains the
line {(0, . . . , 0, y) | y ∈ R}. As A0(W ) ⊂ {(x1, . . . , xn+1) | ψ0(x1, . . . , xn+1)}, then
A0(V ) ⊂ {(x1, . . . , xn) | ∀xn+1 : ψ0(x1, . . . , xn+1)}. 2

There are examples where V =
{
x ∈ (R>0)

n | ϕ(x1, . . . , xn, a1, . . . , am)
}

with ϕ a
positive LOSR -formula, and

A0(V ) (
{
x ∈ Rn | ϕ0(x1, . . . , xn, 0, . . . , 0)

}
.

For example consider the following atomic formula

ϕ(x1, x2, y1, y2, y3) : x2
1 + x2

2 + y1 = y2x1 + y3x2,

with constants a1 = 13 − r2, a2 = 4, a3 = 6, with r2 < 13. This is the equation of
a circle, (x1 − 2)

2
+ (x2 − 3)

2
= r2. The dequantized formula does not depend on the

value of r:
ϕ0(x1, x2, 0, 0, 0, 0) : max(2x1, 2x2, 0) = max(x1, x2).

Now if Vr =
{

(x1, x2) ∈ (R>0)
n | x2

1 + x2
2 + (13 − r2) = 4x1 + 6x2

}
the logarithmic

limit sets of V 3
2
, V 5

2
, V 7

2
are different (see Figure 8): A0

(
V 3

2

)
is the single point (0, 0),

because V 3
2

is compact, A0
(
V 5

2

)
is the ray in the direction (−1, 0), and A0

(
V 7

2

)
is the

union of the two rays in the directions (−1, 0) and (0,−1). For V 7
2
, the formula ϕ0 gives

a definition of the logarithmic limit set:

A0
(
V 7

2

)
=
{

(x1, x2) ∈ R2 | max(2x1, 2x2, 0) = max(x1, x2)
}
,

but for A0
(
V 3

2

)
and A0

(
V 5

2

)
we have a strict inclusion.

Figure 8. Vr = {(x, y) ∈ (R>0)
2 | x2 + y2 + 13 = r2 + 4x + 6y} for r = 3

2 ,
5
2 ,

7
2

respectively. Their logarithmic limit sets are different.
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Even if ϕ
(
x1, x2,

27
4 , 4, 6

)
is a definition of V 5

2
, ϕ0(x1, x2, 0, 0, 0) is not a definition

of A0
(
V 5

2

)
. Anyway we can find another formula with this property, for example:

(4x3
1 + 16x2

1 + 37x1 + 40)
(
x2

1 − 4x1 + x2
2 − 6x2 +

27
4

)
= 0.

This formula gives a definition of V 5
2

because it is the product of a polynomial defining
V 5

2
by a polynomial that has no positive zeros. The dequantized version of this formula is

max(5x1, 0, 2x2, 3x1 + 2x2) = x2 + max(3x1, 0), and one can check explicitly that this
formula defines the ray in the direction (−1, 0), i.e. it is an exact description of A0

(
V 5

2

)
.

There are examples of real algebraic sets V where it is not possible to find an algebraic
formula ϕ defining V such that ϕ0 is a definition ofA0(V ). Here by an algebraic formula
we mean an atomic formula with the relation =, in other words an equation between two
positive polynomials.

Consider for example the cubic V =
{

(x1, x2) ∈ R2 | x2
1 + x2

2 + 1 = 2x2 + x3
1

}
, as

in Figure 7. This cubic has an isolated point in (0, 1). This point is outside the positive
orthant (R>0)

2, hence it does not influence the logarithmic limit set of V ′ = V ∩ (R>0)
2,

but the set defined by {(x1, x2) ∈ R2 | max(2x1, 2x2, 0) = max(x2, 3x1)} contains
also the half line {x2 = 0, x1 ≤ 0} that is not in the logarithmic limit set, and the same
happens for every polynomial equation defining V .

We need to use the order relation ≤ to construct a formula ϕ defining V ′ such that ϕ0
is a definition of A0(V ′). For example:

V ′ =
{

(x1, x2) ∈ (R>0)
2
∣∣∣ x2

1 + x2
2 + 1 = 2x2 + x3

1 ∧ x1 ≥
1
2

}
A0(V ′) =

{
(x1, x2) ∈ R2 | max(2x1, 2x2, 0) = max(x2, 3x1) ∧ x1 ≥ 0

}
.

As we will see in the next subsection, this is a general fact.

6.4 Exact definition. Let C ⊂ Rn be an open convex set such that (0, . . . , 0,−1) ∈ C
and the closure C is a convex polyhedral cone contained in {x ∈ Rn | xn < 0} ∪ {0}.
The faces F1, . . . , Fk of C are described by equations

a1
ix1 + · · ·+ an−1

i xn−1 + xn = 0

and C is described by

C =
{
x ∈ Rn | xn < 0 and ∀i ∈ {1, . . . , k} : a1

ix1 + · · ·+ an−1
i xn−1 + xn < 0

}
.

For every h ∈ R>0, consider the set

Eh(C) =
{
x ∈ (R>0)

n | xn < h and ∀i ∈ {1, . . . , k} : x
a1
i

1 . . . x
an−1
i

n−1 xn < h
}
.

Lemma 6.3. Let V ⊂ (R>0)
n be a set such that A0(V ) ∩ C = ∅. Then for every

sufficiently small h ∈ R>0 we have V ∩ Eh(C) = ∅.
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Proof. Suppose that for all i ∈ N there exists xi ∈ V ∩ E 1
i
(C). Then from the sequence

(xi) ⊂ V we can extract a subsequence yi such that Loge(yi) converges to a point y ∈
C. 2

Note that Eh(C) is described by the following LOSR -formula, with y = h

ϕC(x1, . . . , xn, y) = ¬(y ≤ xn ∨ y ≤ x
a1

1
1 . . . x

an−1
1
n−1 xn ∨ · · · ∨ y ≤ x

a1
n

1 . . . x
an−1
n

n−1 xn)

and C is described by the formula ϕC0 with y = 0.
Let C ⊂ Rn be an open convex set such that the closure C is a convex polyhedral

cone and C ⊂ H ∪ {0} where H is an open half-space. There exists a linear map B such
that (0, . . . , 0,−1) ∈ B(C), and B(C) is contained in {x ∈ Rn | xn < 0} ∪ {0}. We
will use the notation

Eh(C) = B
−1

(Eh(B(C))).

As before there exists an LOSR -formula ϕC(x1, . . . , xn, y) such that

Eh(C) = {x ∈ (R>0)
n | ϕC(x1, . . . , xn, h)}

C = {x ∈ Rn | ϕC0 (x1, . . . , xn, 0)}.

Let V ⊂ (R>0)
n be a set definable in an o-minimal, polynomially bounded structure

with field of exponents R. Then, by Theorem 3.11,A0(V ) is a polyhedral complex, hence
we can find a finite number of sets C1, . . . , Ck such that
(1) C1 ∪ · · · ∪ Ck is the complement of A0(V ).
(2) The closure Ci is a convex polyhedral cone.
(3) There exists an open half-space Hi such that Ci ⊂ Hi ∪ {0}.

Lemma 6.4. Consider the LOSR -formula

ϕ(x1, . . . , xn, y) = ¬ϕC1(x1, . . . , xn, y) ∧ · · · ∧ ¬ϕCk(x1, . . . , xn, y)).

Then
A0(V ) =

{
x ∈ Rn | ϕ0(x1, . . . , xn, 0)

}
and for every sufficiently small h ∈ Rn>0 we have

V ⊂
{
x ∈ (R>0)

n | ϕ(x1, . . . , xn, h)
}
.

Proof. The first assertion is trivial, and the second assertion follows from the previous
lemma. 2

Note that the formula ϕ of the previous lemma has the form ψ1 ∧ · · · ∧ ψk, where the
ψi have the form

ψi = y ≤ xa
1
1

1 . . . x
an1
n ∨ · · · ∨ y ≤ xa

1
m

1 . . . x
anm
n .

These formulae do not contain the + operation, hence when they are interpreted with
the dequantizing operations ⊕t,�t or the tropical operations ⊕,� the interpretation does
not depend on t, and it is simply

ψi = y ≤ a1
1x1 + · · ·+ an1 xn ∨ · · · ∨ y ≤ a1

mx1 + · · ·+ anmxn.
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Corollary 6.5. Let V be definable in an o-minimal, polynomially bounded structure with
field of exponents R. For ε > 0, and for small enough t > 0, we have

sup
x∈At(V )

d(x,A0(V )) < ε.

Proof. Choose h such that V ⊂ {ϕ(x1, . . . , xn, h)}. Then At(V ) ⊂ {ϕt(x1, . . . , xn,
log 1

t
h)}. Note that {ϕt(x1, . . . , xn, log 1

t
h)} is a uniformly bounded neighborhood of

A0(V ), with distance depending linearly on y, hence the distance tends to zero when y
tends to zero. 2

Theorem 6.6. Let ϕ(x1, . . . , xn, y1, . . . , ym) be a positive LOSR -formula, let a1, . . . ,
am ∈ R>0 be parameters and let

V =
{

(x1, . . . , xn) ∈ (R>0)
n | ϕ(x1, . . . , xn, a1, . . . , am)

}
.

Then there exists a positive LOSR -formula ψ(x1, . . . , xn, y1, . . . , yl) and parameters b1,
. . . , bl ∈ R>0 such that

V =
{

(x1, . . . , xn) ∈ (R>0)
n | ψ(x1, . . . , xn, b1, . . . , bl)

}
,

A0(V ) =
{
x ∈ Rn | ψ0(x1, . . . , xn, 0, . . . , 0)

}
.

Proof. Let ϕ′(x1, . . . , xn, y) and h as in Lemma 6.4. Then ψ = ϕ ∧ ϕ′ is the searched
formula. 2

Corollary 6.7. Let V ⊂ (R>0)
n be a closed semi-algebraic set. Then there exists a posi-

tive quantifier-free LOSR -formula ϕ(x1, . . . , xn, y1, . . . , ym) and constants a1, . . . , am ∈
R>0 such that

V =
{
x ∈ (R>0)

n | ϕ(x1, . . . , xn, a1, . . . , am)
}
,

A0(V ) =
{
x ∈ Rn | ϕ0(x1, . . . , xn, 0, . . . , 0)

}
.

Proof. By [5, Theorem 2.7.2], every closed semi-algebraic set is defined by a positive
quantifier-free LOS -formula. 2
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